skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "De Luca, G. Bruno"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> In models with extra dimensions, matter particles can be easily localized to a ‘brane world’, but gravitational attraction tends to spread out in the extra dimensions unless they are small. Strong warping gradients can help localize gravity closer to the brane. In this note we give a mathematically rigorous proof that the internal wave-function of the massless graviton is constant as an eigenfunction of the weighted Laplacian, and hence is a power of the warping as a bound state in an analogue Schrödinger potential. This holds even in presence of singularities induced by thin branes. We also reassess the status of AdS vacuum solutions where the graviton is massive. We prove a bound on scale separation for such models, as an application of our recent results on KK masses. We also use them to estimate the scale at which gravity is localized, without having to compute the spectrum explicitly. For example, we point out that localization can be obtained at least up to the cosmological scale in string/M-theory solutions with infinite-volume Riemann surfaces; and in a known class of$$ \mathcal{N} $$ N = 4 models, when the number of NS5- and D5-branes is roughly equal. 
    more » « less
  2. A bstract We consider gravity compactifications whose internal space consists of small bridges connecting larger manifolds, possibly noncompact. We prove that, under rather general assumptions, this leads to a massive spin-two field with very small mass. The argument involves a recently-noticed relation to Bakry-Émery geometry, a version of the so-called Cheeger constant, and the theory of synthetic Ricci lower bounds. The latter technique allows generalizations to non-smooth spaces such as those with D-brane singularities. For AdS d vacua with a bridge admitting an AdS d +1 interpretation, the holographic dual is a CFT d with two CFT d− 1 boundaries. The ratio of their degrees of freedom gives the graviton mass, generalizing results obtained by Bachas and Lavdas for d = 4. We also prove new bounds on the higher eigenvalues. These are in agreement with the spin-two swampland conjecture in the regime where the background is scale-separated; in the opposite regime we provide examples where they are in naive tension with it. 
    more » « less